(N(2-n)+6n-3n^2)=0

Simple and best practice solution for (N(2-n)+6n-3n^2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (N(2-n)+6n-3n^2)=0 equation:



((2-N)+6N-3N^2)=0
We add all the numbers together, and all the variables
((-1N+2)+6N-3N^2)=0
We calculate terms in parentheses: +((-1N+2)+6N-3N^2), so:
(-1N+2)+6N-3N^2
determiningTheFunctionDomain -3N^2+(-1N+2)+6N
We add all the numbers together, and all the variables
-3N^2+6N+(-1N+2)
We get rid of parentheses
-3N^2+6N-1N+2
We add all the numbers together, and all the variables
-3N^2+5N+2
Back to the equation:
+(-3N^2+5N+2)
We get rid of parentheses
-3N^2+5N+2=0
a = -3; b = 5; c = +2;
Δ = b2-4ac
Δ = 52-4·(-3)·2
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-7}{2*-3}=\frac{-12}{-6} =+2 $
$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+7}{2*-3}=\frac{2}{-6} =-1/3 $

See similar equations:

| -10x-9=6x-33 | | -3w-2.5=12.5 | | 4x+3=-1x-2 | | 5^x-6=5^3 | | 5(t+2)-3(t+1)=-2 | | 5x-5=5^3 | | 6n^2+2n-16=0 | | 5d+5=25 | | (x/x-5)+(5/x+5)=(1/x^2-25) | | x+109=x+79 | | 25=-9g+7 | | 3x*4)^2=100 | | 5y-5(2y/6)=15 | | 2(4x-8)=8x+17 | | 2/12x9/12=x | | -4p+12=-8 | | (-6)-x/4=(-5) | | -7(-5x+3)=399 | | 4(2u+1)=6u+8 | | y/10+20=-10 | | 12-x=-1+8 | | –44+r=–45 | | 5^x+2=4^2x-3 | | X+19=x+89 | | 25^x=369 | | 6=-8/7+x | | 4x+4=4-3 | | -2y+12=3+3y | | 4/7k=16 | | 5x+9=-6x+2 | | X+300=y | | 8x+85=14 |

Equations solver categories